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Regulatory Networks

Collection of species (DNA, RNA, proteins) interacting:

B

A C

We want to understand the kinds of dynamics we can get, but this is
difficult as there are many different parameters that can vary:

How much one species affects another

When each species starts to affect another

The decay rate of each species
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DSGRN1

My mentors have developed a computational technique that makes
analyzing the dynamics of regulatory networks feasible and have created
the software Dynamic Signatures Generated by Regulatory Networks
(DSGRN).

B

A C

In: Regulatory Network Out: Parameter Graph

1Bree Cummins, Tomas Gedeon, Shaun Harker, Konstantin Mischaikow, and Kafung
Mok. Combinatorial Representation of Parameter Space for Switching Systems. SIAM
Journal on Applied Dynamical Systems, 15 (2016).
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Mathematical Definition of a Regulatory Network

In DSGRN, this is how a regulatory network is modeled:
Variables: x1, . . . , xN ∈ R>0

Parameters:

Each species has a decay rate γj

Each edge has a low value ℓj ,i , high value ℓj ,i + δj ,i , and threshold θj ,i

Each γj , ℓj ,i , δj ,i , θj ,i ∈ R>0

Differential equations: ẋj = −γjxj + Λj(x), where

Λj(x) =
!

i→j

"
ℓj ,i xi < θj ,i
ℓj ,i + δj ,i xi > θj ,i

+
!

i⊣j

"
ℓj ,i + δj ,i xi < θj ,i
ℓj ,i xi > θj ,i

B

A C
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My Work

For my project, I worked on generalizing the interactions between species,
allowing there to be multiple thresholds:
For some m, each edge has θ(1), . . . , θ(m−1) as thresholds and
ℓ, δ(1), . . . , δ(m−1) as the expression levels. So instead of:

θ
we might have:

θ(1) θ(2)

or

θ(1) θ(2)
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Parameter Space Decomposition

Each parameter in DSGRN is defined by a set of inequalities. This allows
for a very quick computation to find the dynamics of a given parameter.

For example, let’s take a simple regulatory network:

Λ(x)

x
θ(1) θ(2)

ℓ
ℓ+ δ(1)

ℓ+ δ(1) + δ(2)

1

Recall: ẋ = −γx + Λ(x)

Then one possible parameter is

γθ(1) < γθ(2) < ℓ < ℓ+ δ(1) < ℓ+ δ(1) + δ(2)

which gives this phase line:

θ(1) θ(2)
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Parameter Space Decomposition

Recall: ẋ = −γx + Λ(x)

Another parameter is

ℓ < γθ(1) < ℓ+ δ(1) < ℓ+ δ(1) + δ(2) < γθ(2)

which gives a different phase line:

θ(1) θ(2)

Not all parameters are possible. For example we can’t have

ℓ < γθ(1) < ℓ+ δ(1) + δ(2) < γθ(2) < ℓ+ δ(1)

because ℓ+ δ(1) + δ(2) < ℓ+ δ(1) implies δ(2) < 0 which is not allowed.
Thus we must find the possible parameters and this becomes
computationally difficult with more complicated systems.
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Parameter Space Decomposition (PSD)

If we want DSGRN to be able to handle regulatory networks with multiple
thresholds, we need to compute the parameter space decomposition i.e.
find all possible parameters as defined by inequalities. To put it formally:

Let n be the number of input edges at a given node, and let each edge
have m levels of expression (i.e. m − 1 thresholds).
Let E := {α : {1, 2, . . . , n} → {0, 1, . . . ,m − 1}} be the set of m-ary
functions on {1, . . . , n}. Then we define

P :=

#
$

%

n!

i=1

(ℓi +

α(i)!

k=1

δ
(k)
i ) : α ∈ E

&
'

(

P ⊂ R[ℓ1, . . . , ℓn, δ
(1)
1 , . . . , δ

(1)
n , . . . , δ

(m)
1 , . . . , δ

(m−1)
n ]

which is all the possible values Λ(x) can hold.

The PSD problem is to find all possible orderings of elements in P that are
admissible.
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Parameter Space Decomposition (PSD)

An admissible ordering means that there is some set of parameters that
satisfies the ordering. Formally:

Say the polynomials in P are indexed in some way from 1 to |P|.
For σ in the symmetric group S|P|, we call σ admissible if its realizable set

Ξσ := {ξ ∈ Ξ : pσ(k)(ξ) < pσ(k+1)(ξ) for all 1 ≤ k ≤ |P|}

is non-empty.

In other words, the order ≺σ can be realized where

pσ(1) ≺σ pσ(2) ≺σ · · · ≺σ pσ(|P|).
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LC-LEP2

Because the polynomials in P are linear, the PSD problem can be stated
as an instance of a more general problem, the linearly constrained linear
extension problem (LC-LEP):

Let P = {p0, . . . , pK} be a set of linear polynomials defined on a linearly
constrained region Ξ ⊂ Rd (Ξ is called the evaluation domain).

Then let ≺ be the partial order on P such that if p ≺ q then

p(ξ) < q(ξ) for all ξ ∈ Ξ.

Then the solution to LC-LEP is to find all admissible total orders
σ ∈ SK+1. Because ≺σ must satisfy ≺, ≺σ is a linear extension of ≺.

The solution to LC-LEP is denoted T (P,≺,Ξ).
2Shane Kepley, Konstantin Mischaikow, Lun Zhang. Computing linear extensions for

Boolean lattices with algebraic constraints.
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Representation Vectors

Now I will go over an algorithm that can solve LC-LEP in a reasonable
amount of time, and this algorithm can then be used for the PSD problem.

But first, there are some constructions we must define:

Given a linear polynomial p, there exists the representation vector up where

p(ξ) = ξ · up for all ξ ∈ Rd .

Additionally, recall that Ξ is linearly constrained which means there is a set
of linear polynomials QΞ such that

Ξ = {ξ ∈ Rd : ξ · uq > 0 for all q ∈ QΞ}.
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Cones

The region C ⊂ Rd is called a cone if for any v ∈ C and θ ∈ [0,∞),
θv ∈ C . We call a cone C pointed if it is closed, convex, and satisfies

C ∩ −C = C ∩ {−v : v ∈ C} = {0}.

A vector v is called a conic combination of vectors v1, . . . , vk if there
exists θ1, . . . , θk ≥ 0 such that v = θ1v1 + · · ·+ θkvk .

The set of all conic combinations of a set V = {v1, . . . , vk} is called the
conic hull and is given by

cone(V ) := {θ1v1 + · · ·+ θkvk : θi ≥ 0, i = 1, . . . , k}

cone(V ) is always a closed and convex set.
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Fact about cones

Proposition

Let V = {v1, . . . , vm} ⊂ Rd and suppose cone(V ) is pointed. If
−v ∕∈ cone(V ), then cone(V ∪ {v}) is pointed.

Proof: Suppose cone(V ∪ {v}) is not pointed. Then there exist w ∕= 0
such that w ,−w ∈ cone(V ∪ {v}) i.e.

w =
m!

i=1

αivi + αv and − w =
m!

i=1

βivi + βv

where all αi ,α,βi ,β ≥ 0. If α = β = 0, then w ,−w ∈ cone(V ) which
contradicts the fact cone(V ) is pointed. If we add the two equations
above and rearrange, we get

−(α+ β)v =
m!

i=1

(αi + βi )vi

which contradicts the fact that cone(V ) is pointed.
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Preliminary Algorithms

To check if a vector is in a cone, this can be stated as a linear feasibility
problem:

Linear feasibility is a well studied problem with many algorithms available,
so we can just pick one and have an algorithm for cone inclusion, which
we will just call InCone.

Adam Zheleznyak Parameter Space Decomposition July 29, 2020 14 / 22



Preliminary Algorithms

Then, using the previous result, we can write an algorithm to check if a
cone is pointed
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Algorithm for LC-LEP

Let VΞ := {uq : q ∈ QΞ} and

V≺ := {up−q : up−q represents p − q where q ≺ p, q, p ∈ P }.

Define the base cone V0 := VΞ ∪ V≺

Because uq · ξ > 0, ∀ξ ∈ Ξ for each q ∈ QΞ (by definition of QΞ) and
up−q · ξ = p(ξ)− q(ξ) > 0, ∀ξ ∈ Ξ (by definition of ≺), if we use
CheckCone must say V0 is pointed since at each step of the algorithm, if
−v ∈ cone(V) for some v ∈ V0, then ξ · (−v) < 0. However this gives a
contradiction since if −v =

)m
i=1 αivi for vi ∈ V0, then

ξ · (−v) =
m!

i=1

αiξ · vi > 0.
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Algorithm for LC-LEP

Proposition

Suppose V = {v0, . . . , vm} ⊂ Rd is a collection of nonzero vectors such
that cone(V ) is a pointed cone. Then, there exists some v ′ ∈ Rd such
that v ′ · vi > 0 for all 0 ≤ i ≤ m.

Given σ ∈ SK+1, define
Vσ := V0 ∪ {upσi+1 − upσi : pσi ∈ P, i = 0, . . . ,K − 1}

Proposition

For σ ∈ SK+1, Ξσ ∕= 0 if and only if cone(Vσ) is pointed.

Proof: Assume Ξσ ∕= ∅ and that ξ ∈ Ξσ. If cone(Vσ) is not pointed, then
there are nonzero vectors −v , v ∈ cone(Vσ). But by definition of Ξσ

means −v · ξ > 0 and v · ξ > 0 which is a contradiction.

If cone(Vσ) is pointed, then by the first proposition, there is some ξ such
that ξ · v > 0 for all v ∈ Vσ which by definition implies ξ ∈ Ξσ i.e. Ξσ ∕= 0.
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Algorithm for LC-LEP

By the last proposition, we have the equivalence

T (P,≺,Ξ) = {σ : Ξσ ∕= ∅} = {σ : cone(Vσ) is pointed}
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Algorithm for LC-LEP
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Results So Far

With the algorithm, I calculated a database of total orders.

Here, n is the number of inputs and m − 1 is the number of thresholds.

(n = 2, m = 2): 2 total orders (instant)
(n = 3, m = 2): 12 total orders (instant)
(n = 4, m = 2): 336 total orders (∼ 90 seconds)
(n = 2, m = 3): 36 total orders (instant)
(n = 2, m = 4): 6660 total orders (∼ 5 minutes)

Each of (n = 3, m = 3) and (n = 2, m = 5) cases didn’t finish after 8
hours on my laptop.
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Next Steps

There is still more work to be done:

Calculate the total orders for larger n and m on a server using
distributed CPUs.

Modify the code of DSGRN so that it can handle multiple thresholds
in order to use the database I’ve created.
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